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CALCULATION OF A HEAT FLOW

FROM A SPHERICAL PARTICLE IN A DIATOMIC GAS

UDC 533.72S. A. Savkov1 and A. A. Yushkevich2

The problem of heat flow from a uniformly heated spherical particle in a diatomic gas is considered.
The paper reports results of numerical calculations for an analog of the Bhatnagar–Gross–Krook model
of the collision integral under for purely diffuse reflection of the gas molecules from the surface.

The heat flow for an intermediate range of Knudsen number remains an urgent problem of the kinetic theory
of gases. In theoretical analysis of this phenomenon, only translational degrees of freedom are taken into account,
as a rule, whereas most experiments were performed with molecular gases, which requires allowance for internal
degrees of freedom [1]. The contribution of each type of motion is determined by the nature of the energy spectrum.
As is known (see, for example, [2]), the distance between the energy levels of rotational degrees of freedom is defined
by the relation ~2/(2J) (~ is Planck’s constants and J is the moment of inertia of a molecule) and is comparable
to the energy of thermal motion kT (k is a Boltzmann constant) only for the lightest gases. Thus, for hydrogen
molecules, ~2/(2Jk) = 85.4 K. For heavier molecules, this value is much smaller, which allows one to ignore the
discrete nature of the energy spectrum of rotational motion and consider rotational degrees of freedom in the
classical approximation. Vibrational degrees of freedom are excited at temperatures of about 103 K, and, hence,
they can be considered completely frozen.

The effect of rotational degrees of freedom on kinetic processes is studied using both direct numerical
modeling [3] and various modifications of models of the collision integral [4–9]. It is common to introduce various
empirical parameters are introduced, in particular, the quantity Z, which is the ratio of the energy relaxation times
of translational and rotational degrees of freedom. The indicated quantity can take different values for different
processes. In addition, it depends on the choice of a particular model.

Using parameters determined ambiguously by properties of gas, it is impossible to compare results obtained in
different studies. Therefore, it is important to investigate the limiting case where the relaxation times of translational
and rotational degrees of freedom are equal, which is valid for many gases at room temperature [1, 10].

Let us consider the problem of a heat flow from a spherical particle of radius R heated uniformly to tem-
perature Tw and located in a diatomic gas in which constant temperature T0 at infinity is maintained. To linearize
the problem, we assume that the temperature difference ∆T = Tw − T0 is rather small.

We introduce a spherical coordinate system with origin at the center of the particle. The state of the gas
surrounding the particle is described by the equation [11]

Cr
∂ϕ

∂r
+
C2 − C2

r

r

∂ϕ

∂Cr
= I[ϕ], (1)

where ϕ is a correction to the equilibrium (Maxwellian) distribution function f0 = n0(m/(2πkT0))3/2

× (J/(kT0)) exp (−C2 − γ2), C = V
√
m/(2kT0), γ = ω

√
J/(2kT0), V and ω are the natural velocities of trans-

lationally and rotationally moving molecules of the gas, respectively, I is an integral collision operator, m is the
molecular weight, n0 is the concentration of molecules at infinite distance from the particle.
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Following [12], we write

I[ϕ] = ν(F − ϕ), F =
3∑
i=1

PiMi, ν =
7n0

æ

√
k3T0

8m
=

1
χ

√
kT0

2m
.

Here
Mi = 2π−3/2

∫
Piϕ exp(−C2 − γ2)γ dγ d3C,

(2)

P1 = 1, P2 =
√

2/5 (C2 + γ2 − 5/2), P3 =
√

2Cr,

and æ and χ are the thermal conductivity and thermal diffusivity, respectively.
Converting to the new variable µ = (C · r)/(Cr), we write (1) as

µ
∂ϕ

∂r
+

1− µ2

r

∂ϕ

∂µ
=
ν

C
(F − ϕ). (3)

Considering F as a specified function, we write the following system of characteristic equations:

dr

µ
=

r dµ

1− µ2
=
C

ν

dϕ

F − ϕ
.

The first equality dr/µ = r dµ/(1− µ2) is solved trivially. As a result, we obtain the characteristic equation

K1 = r
√

1− µ2. (4)

The second equation has the form dr/µ = (C/ν) dϕ/(F − ϕ). Substituting the value µ = ±
√

1−K2
1/r

2 obtained
from (4) into this equation, we obtain
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From this, we have
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. (5)

The arguments of the function F imply that in the calculation of this function, r1 and sign (µ)
√

1−K2
1/r

2
1 should

be taken as r and µ, respectively.
To obtain a unique solution, it is necessary to specify boundary conditions. Taking into account the structure

of (5) and the discontinuous nature of the distribution function along the characteristic r
√

1− µ2 = R, we divide the
range of the variables (r, µ) into three subregions: 1) µ ∈ [−1, 0]; 2) µ ∈ [0,

√
1−R2/r2 ]; 3) µ ∈ [

√
1−R2/r2, 1].

The distribution functions in the indicated regions are denoted by corresponding subscripts.
The required solution should satisfy the finiteness condition ϕ|r→∞ = 0. For µ > 0, this requirement is

satisfied automatically, which allows one to define the distribution function to be defined only in region 1. The
value of the distribution function in region 2 is given by the condition of its continuity on the boundary between
regions 1 and 2, i.e., ϕ2(r, 0) = ϕ1(r, 0) for µ = 0. The boundary condition in region 3 is specified by the law of
reflection of gas molecules from the particle surface ϕ3(R, µ) = Φw(µ) at 0 < µ < 1 (Φw is the distribution function
of the molecules reflected from the particle surface).

The solution of Eq. (3) satisfying the conditions listed above can be written as

ϕ = ϕ1H1 + ϕ2H2 + ϕ3H3, (6)

where H1 = H(−µ), H2 = 1−H1 −H3, H3 = H(µ−
√

1−R2/r2), H(x) = (|x|+ x)/(2x) is a standard Heaviside
function,

ϕ1 =
ν

C

∞∫
r

exp
(
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C
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rµ+

√
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))
F
(
r1,−

√
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r2
1

(1− µ2)
) r1 dr1√

r2
1 − r2(1− µ2)

,
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ν
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+
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Substituting (6) and (7) into the definition (2), we obtain a system of integral equations for Mi, and the
integration over γ is performed analytically. For this, the distribution function should be treated as a vector:

ϕ = ϕ1e1 + ϕ2e2, e1 = 1, e2 = γ2 − 1. (8)

Then, we can write

2

∞∫
0

Pϕγ exp (−γ2) dγ = P · ϕ = P 1ϕ1 + P 2ϕ2.

In addition, from the condition of absence of mass motion of the gas, we have

M3 = 0. (9)

As a result, the problem reduces to the following system of two integral equations:

Mi(r) =
2√
π

∞∫
0

( 0∫
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√
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0
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1∫
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)
C2 exp (−C2) dC (i = 1, 2),
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)) Mj(r1)r1 dr1√
r2
1 − r2(1− µ2)

,

ϕ2 =
ν

C

2∑
j=1

Pj

r∫
r
√

1−µ2

exp
( ν
C

(√
r2
1 − r2(1− µ2)− rµ

)) Mj(r1)r1 dr1√
r2
1 − r2(1− µ2)

+
ν

C

2∑
j=1

Pj

∞∫
r
√

1−µ2

exp
(
− ν

C

(
rµ+

√
r2
1 − r2(1− µ2)

)) Mj(r1)r1 dr1√
r2
1 − r2(1− µ2)

,

ϕ3 =
ν

C
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R

exp
( ν
C

(√
r2
1 − r2(1− µ2)− rµ

)) Mj(r1)r1 dr1√
r2
1 − r2(1− µ2)

+ Φw exp
( ν
C

(√
R− r2(1− µ2)− rµ

))
.

Here P 1
1 = 1, P 2

1 = 0, P 1
2 =

√
2/5(C2 − 3/2), and P 2

2 =
√

2/5.
The solution of the system obtained is sought in the form of a series in Chebyshev polynomials. Restricting

ourselves to the first K terms and collecting the terms describing the asymptotic behavior of the required momenta
in the gas-dynamic region, we write
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Mi(r) =
K∑
k=0

AikTk(ξ(r)) +Mas
i , ξ = 1− 2 exp (−β

√
r2 −R2),

(10)

Mas
1 = −(4/7)(R2ν/r)Q, Mas

2 = −
√

5/2Mas
1

(Q is the dimensionless heat flux). The series coefficients are given by the condition
K∑
j=0

Tk(ξj)Tl(ξj) =
K + 1

2
(δ0k + 1)δkl, ξj = cos

(2j + 1)π
2K + 2

.

The value of β is selected such that most of the nodes of interpolation lie in the main range of the distribution
function. The constant Q is linked to the sought heat flux

q =
∫
Vr

(mv2

2
+
Jω2

2

)
f0ϕω dω dV

by the relation

q = n0

√
2k3T 3

0 /m (R2/r2)Q,

and, according to the energy conservation law, the quantity Q can be evaluated at any point, in particular on the
particle surface. From this, we have

Q = 2π−3/2

∫
µC(C2 + γ2)ϕ exp (−C2 − γ2)γ dγ dC =

4√
π

∞∫
0

dC

∞∫
0

dγ

1∫
0

ΦwµC3(C2 + γ2) exp (−C2 − γ2) dµ

+
2ν√
π

2∑
j=1

∞∫
0

(P 1
j (C2 + 1) + P 2

j )C2 dC

0∫
−1

µdµ

∞∫
R

Mj(r1)

× exp
(
− ν

C

(
Rµ+

√
r2
1 −R2(1− µ2)

)
− C2

) r1 dr1√
r2
1 −R2(1− µ2)

. (11)

We consider the case of purely diffuse reflection of gas molecules from the particle surface

Φw = ∆n/n0 + (C2 + γ2 − 5/2)∆T/T0.

The difference in gas molecule concentration ∆n is given by condition (9), which is equivalent to the relation

∆n
n0

= −1
2

∆T
T0
− 8

∞∫
0

dC

∞∫
0

dγ

0∫
−1

ϕ(R)γµC3 exp (−C2 − γ2) dµ.

Taking into account the definition (8), we have

Φw = Φ1
we1 + Φ2

we2,

where

Φ1
w = (C2−2)

∆T
T0
−4ν

2∑
j=1

∞∫
0

P 1
j C

2dC

0∫
−1

µdµ

∞∫
R

Mj(r1) exp
(
− ν
C

(
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√
r2
1 −R2(1− µ2)

)
−C2

) r1 dr1√
r2
1 −R2(1− µ2)

,

Φ2
w = ∆T/T0.

As a result, relation (11) leads to

Q =
3

2
√
π

∆T
T0

+
2ν√
π
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∞∫
0

(P 1
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0∫
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µdµ

∞∫
R
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× exp
(
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C

(
Rµ+

√
r2
1 −R2(1− µ2)

)
− C2

) r1 dr1√
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1 −R2(1− µ2)

. (12)
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Fig. 1 Fig. 2

TABLE 1

Rν
Diatomic gas

Atomic gas
(K = 20)K = 3 K = 5 K = 10 K = 15 K = 20

0.01 0.8456 0.8454 0.8448 0.8441 0.8437 0.5622
0.1 0.8326 0.8248 0.8174 0.8201 0.8209 0.5466
0.2 0.8113 0.7935 0.7938 0.7964 0.7966 0.5304
0.5 0.7303 0.7125 0.7278 0.7280 0.7286 0.4864
1 0.6072 0.6215 0.6297 0.6307 0.6313 0.4244
2 0.4568 0.4906 0.4911 0.4906 0.4947 0.3341
5 0.2725 0.2785 0.2786 0.2786 0.2786 0.1945
10 0.1587 0.1575 0.1577 0.1577 0.1577 0.1113
100 0.01731 0.01732 0.01732 0.01732 0.01732 0.01258

In the case of a small particle, the second term in (12) can be ignored. Consequently, in the free-molecular
regime, the heat flux is

Q = (3/(2
√
π))∆T/T0,

i.e., it is a factor of 1.5 greater than that in an atomic gas. This difference does not depend on the form of the
collision integral and is determined exclusively by the presence of additional degrees of freedom (see, e.g., [11]).

In the gas-dynamic limit (Rν � 1), the distribution function is defined by the Chapman–Enskog distribution.
As a result,

Q = Q∞ = (7/(4Rν))∆T/T0,

and, taking into account the definition of ν, we have q = æR∆T/r2. This expression coincides with the solution of
the problem considered for the case of an atomic gas.

A curve of Q versus particle size is given in Fig. 1 (solid curve). The figure also shows the results of solution
of the kinetic equation for an atomic gas using the Bhatnagar–Gross–Krook model (dashed curve is the data of the
present study and the points are the results of numerical integration of the kinetic equation of [13]).

It should be noted that in most papers, results are presented in the form of the ratio Q/Q∞. In Fig. 2
(notation same as in Fig. 1) it is evident that such representation of the results does not fit the real dependence
of the heat flux on particle size and leads to the wrong conclusion [14] that the dependences for one-atomic and
polyatomic gases are identical. In this case, the dependence Q/Q∞ (ln (Rν)) agrees with the results of [14] obtained
in later experiments on measuring the heat flux between coaxial cylinders [15].

We also note that the idea of converting the Boltzmann equation to a system of integral equations for
the moments of the distribution function was used to solve similar problems in [16–18]. In [16, 17], the system
formulated was solved by the variational method. In this case, the trial function was chosen such that it provided
an exact asymptotic description of the macroscopic parameters in the gas-dynamic region. As a result, the heat flux
was specified by the relation q = C1/r

2, which represents the facts adequately by virtue of the energy conservation
law, whereas the temperature and concentration distributions were defined as T = C2/r and n = C3/r, which is
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valid only at large distance from the particle. The constants Ci were calculated from the condition of minimum of
the corresponding functional. In [18], the Galerkin method was used but the trial function was selected similarly
to [16, 17].

Use of Chebyshev polynomials eliminates additional integration, required when using the Galerkin method.
This reduces the computation time considerably and makes it possible to calculate a larger number of polynomials
in the series (10). Values of the parameter QT0/∆T versus the number of polynomials retained are listed in Table 1.
For comparison, the table lists values of this parameter obtained by the same method for atomic gases.
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